Search results for "Inverse source problem"
showing 2 items of 2 documents
Optimal recovery of a radiating source with multiple frequencies along one line
2020
We study an inverse problem where an unknown radiating source is observed with collimated detectors along a single line and the medium has a known attenuation. The research is motivated by applications in SPECT and beam hardening. If measurements are carried out with frequencies ranging in an open set, we show that the source density is uniquely determined by these measurements up to averaging over levelsets of the integrated attenuation. This leads to a generalized Laplace transform. We also discuss some numerical approaches and demonstrate the results with several examples.
Radiating and non-radiating sources in elasticity
2018
In this work, we study the inverse source problem of a fixed frequency for the Navier's equation. We investigate that nonradiating external forces. If the support of such a force has a convex or non-convex corner or edge on their boundary, the force must be vanishing there. The vanishing property at corners and edges holds also for sufficiently smooth transmission eigenfunctions in elasticity. The idea originates from the enclosure method: The energy identity and new type exponential solutions for the Navier's equation.